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Abstract. We propose damage spreading (DS) as a tool for investigating the topological features
related to the ruggedness of the free-energy landscape. We argue that DS measures the positiveness
of the largest Lyapunov exponent associated with the basins of attraction visited by the system during
its dynamical evolution. We discuss recent results obtained in the framework of mode-coupling
theory and comment on possible extensions to the study of realistic glasses. Preliminary results
are presented for purely repulsive soft-sphere glasses.

1. Introduction

The theoretical understanding of a first-principles theory for the glass transition is still lacking.
Despite the great advances in the understanding of some generic features associated with the
glass transition (such as those predicted by the mode-coupling theory), some questions still
remain largely unanswered. Going beyond the schematic mode-coupling theory seems to be
an enormous task, so an alternative way of looking at the glass transition may be useful. In
this direction, the study of the topological properties of the potential or free-energy landscape
may yield further information on the mechanisms responsible for the anomalous viscosity of
the glassy phase.

The idea that topological aspects of the potential or free-energy landscape are the ultimate
causes for the glass transition goes back to Goldstein [1] and (more recently) Stillinger and
Weber [2, 3]. This approach has been recently applied to the study of hard spheres [4], mon-
atomic as well as binary Lennard-Jones glasses [5] and mean-field models of glasses [6].

Here we propose an alternative dynamical approach for studying the topological properties
of the potential energy landscape. We will concentrate on the study of the stable local properties
of the configurations visited by the system during its dynamical evolution. This is directly
achieved through the study of how dynamical trajectories, which evolve following the same
stochastic noise, depart from each other in the presence of a potential energy saddle point or
a maximum which may induce a negative Lyapunov exponent. The simplest way to study
this problem is through damage-spreading (DS) techniques, to be described later on in some
detail. Although DS was introduced almost two decades ago as an alternative way to consider
thermodynamic phase transitions, the initial enthusiasm for this problem was substantially
dissipated when it was realized that DS transitions are not universal and not necessarily related
to thermodynamic singularities.

Despite this result, here we will show that these transitions have added interest in that
they may be used as a direct way to investigate the local free-energy landscape properties
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by measuring the largest Lyapunov exponent associated with the Hamming distance (to be
defined later). In what follows I will explain in more detail why DS is a good way of looking at
the rugged properties of the potential energy landscape. Later on I will discuss the analytical
results obtained for the schematic mode-coupling theory and finally discuss how to extend
these ideas to the study of real glasses. Some preliminary results are shown for the case of
binary soft-sphere purely repulsive glasses.

2. Why damage spreading?

Consider two systems evolving under a Langevin dynamics, each one described by a set of
N variables xi, yi (1 � i � N) evolving in a potential energy landscape V under the same
stochastic noise ηt with 〈ηi(t)ηj (s)〉 = 2T δij δ(t − s). Although the present discussion can be
generalized for different stochastic noises, here we will concentrate on the simplest case (for
a more detailed discussion see [7]). The equations of motion read

ẋi (t) = Fi({x}) + ηi(t) (1)

ẏi (t) = Fi({y}) + ηi(t) (2)

where Fi({x}) = −∂V/∂xi . Note that the two trajectories described by the systems x and
y never cross in phase space, so two identical configurations such that xi(t) = yi(t) remain
identical forever (and were identical in the past). The equation for the difference variables
zi = xi − yi reads

żi (t) = Fi({xi})− Fi({yi}). (3)

If the zi are small we can expand (3) around zi = 0, obtaining

żi (t) =
∑
j

∂Fi({y})
∂yj

zj = −
∑
j

∂2V ({y})
∂yi ∂yj

zj (4)

which may be written in a simplified form:

żi = Hij ({y})zj (5)

where Hij is the Hessian matrix evaluated at the configuration y. Always within the linear
approximation, the dynamical evolution of the distance between configurations zi will increase
or decrease according to whether the spectrum of eigenvalues of the Hessian matrix contains
positive eigenvalues. In this sense, DS probes the spectrum of eigenvalues of the matrix
and shows instabilities whenever the matrix develops positive eigenvalues. A more precise
condition is given by the maximum Lyapunov exponent defined through

λmax = lim
t→∞

log(D(t))

t
(6)

where

D(t) = 1

N

∑
i

z2
i

which should be positive whenever zi = 0 is dynamically unstable. Note that the Hessian
depends on time through the time evolution of the generic configuration y. This may be
an equilibrium or an off-equilibrium configuration. So in principle the maximum Lyapunov
exponent depends on time through the time evolution of the systems x and y. We will see
later that, in general, the types of initial condition (as well as the initial distance) are not
relevant parameters for the DS transition. In this sense DS probes the temperature at which
the lowest accessible configurations in the potential energy landscape develop unstable modes,



Dynamical phase transitions in glasses 6455

which is a direct check of the corrugated properties of the free-energy landscape. Again, we
must stress the non-universality of the properties of the DS dynamics. The present discussion
on the stability properties of the Hessian matrix and its connection with the DS transition is
valid in the framework of Langevin dynamics. For other types of dynamics (such as Monte
Carlo or Glauber dynamics) the situation may be different and the physical meaning of DS
phenomena more difficult to establish. In some sense, Langevin dynamics is an appropriate
tool for exploring the topological properties of the potential energy landscape.

3. DS in mode-coupling theory

Insight into the previous problem can be obtained through a careful study of the DS equations
in the case of ideal mode-coupling theory. It has been known since the seminal work by
Kirkpatrick, Thirumalai and Wolynes [8] that mode-coupling equations can be obtained in the
framework of exactly solvable p-spin glass models. Due to their mean-field character, in this
class of models it is possible to unambiguously define concepts such as the configurational
entropy or complexity and the mode-coupling transition temperature Tc. The description of
this type of model is possible in the framework of the TAP analysis [9] where it is possible
to show that they contain a large number of metastable states (becoming exponentially large
with N ) as well as a threshold energy where the system gets trapped in an aging state and the
fluctuation-dissipation theorem is violated in a peculiar way [10].

Spherical p-spin models (compared to Ising-spin models) have the clear advantage of
being exactly solvable, so it is convenient to perform analytical computations in that case. The
potential energy in this model is defined by

V = −
∑

(i1<i2<···<ip)
Ji1,i2,i3,...,ipσi1σi2σi3 · · · σip (7)

where the spins σi are real valued spins which satisfy the spherical constraint
∑N
i=1 σ

2
i = N .

The Ji1,i2,i3,...,ip are quenched random variables with zero mean and variance p!/(2Np−1). The
Langevin dynamics of the model is given by

∂σi

∂t
= Fi({σ })− µσi + ηi (8)

where µ is a Lagrange multiplier which ensures that the spherical constraint is satisfied at all
times and the noise η satisfies the fluctuation-dissipation relation 〈ηi(t)ηj (s)〉 = 2T δ(t− s)δij
where 〈· · ·〉 denotes the noise average. Fi is the force acting on the spin σi due to the interaction
with the rest of the spins:

Fi = −∂V
∂si

= 1

(p − 1)!

∑
(i2,i3,...,ip)

Ji1,i2,...,ipσi2σi3 · · · σip . (9)

We define the overlap between two configurations of the spins σ, τ by the relation

Q = 1

N

N∑
i=1

σiτi

so the distance between these two configurations is

D = 1 −Q
2

(10)

in such a way that identical configurations have zero distance and opposite configurations have
maximal distance D = 1. Then we consider two copies of the system {σi, τi} which evolve
under equation (8) with the same statistical noise and start from random initial configurations.
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The final equations are [7]

∂C(t, s)

∂t
+ µ(t)C(t, s)

= p

2

∫ s

0
du R(s, u)Cp−1(t, u) +

p(p − 1)

2

∫ t

0
du R(t, u)C(s, u)Cp−2(t, u)

(11)
∂R(t, s)

∂t
+ µ(t)R(t, s) = δ(t − s) +

p(p − 1)

2

∫ t

s

du R(t, u)R(u, s)Cp−2(t, u) (12)

∂Q(t, s)

∂t
+ µ(t)Q(t, s)

= p

2

∫ s

0
du R(s, u)Qp−1(t, u) +

p(p − 1)

2

∫ t

0
du R(t, u)Q(u, s)Cp−2(t, u).

(13)

The dynamical equations involve the two-times correlation, response and overlap functions
C(t, s), R(t, s),Q(t, s) defined by (in what follows we take t > s)

C(t, s) = (1/N)
N∑
i=1

〈σi(t)σi(s)〉 = (1/N)
N∑
i=1

〈τi(t)τi(s)〉 (14)

R(t, s) = (1/N)
N∑
i=1

∂〈σi〉
∂hσi

= (1/N)
N∑
i=1

∂〈τi〉
∂hτi

(15)

Q(t, s) = (1/N)
N∑
i=1

〈σi(t)τi(s)〉 (16)

where 〈· · ·〉 denotes the average over dynamical histories and hσi , h
τ
i are fields coupled to the

spins σi, τi respectively. These equations are complemented with the appropriate boundary
conditions C(t, t) = 1,Qd(t) = Q(t, t), R(s, t) = 0, limt→(s)+ R(t, s) = 1 and the relations

µ(t) = T +
p2

2

∫ t

0
du R(t, u)Cp−1(t, u) (17)

1

2

∂Qd(t)

∂t
+ µ(t)Qd(t)

= T +
p

2

∫ t

0
du R(t, u)Qp−1(t, u)

+
p(p − 1)

2

∫ t

0
du R(t, u)Q(t, u)Cp−2(t, u). (18)

These equations can be analysed in detail using different methods. Here we summarize
the main results obtained [7]:

• Existence of a dynamical transition T0. There is a temperature T0 such that D(t) = 0
(or Qd(t) = 1; see equation (10)) is a stable fixed point for T > T0, becoming unstable
below T0. Because of the non-monotonic character ofD(t) it is very difficult to derive T0

analytically. Nevertheless, it is possible to obtain an upper and a lower bound. One gets
√
p − 2

2
� T0 �

√
p

2
. (19)
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Direct numerical integration of the equations of motion yields T0(p = 3) = 1.04 ± 0.02
(see figure 1) and T0(p = 4) = 1.13 ± 0.02. The value of T0 is well above the mode-
coupling temperature Tc and the TAP temperature TTAP below which the number of
metastable states is exponentially large (with the system size).

• Independence of initial conditions. The asymptotic damage

D(∞) = lim
t→∞ lim

N→∞
D(t)

is independent of the value of the initial damage D(0) or the class of initial conditions
(for instance, random or thermalized; see figure 2). This independence underlines the fact
that DS is a true dynamical transition and the asymptotic damage D(∞) is a dynamical
order parameter.

• T0 is the lowest DS temperature. The DS problem can be suitably generalized to the
case of correlated noises such that 〈ηi(t)ξj (s)〉 = 2TK(Q(t, s))δ(t − s)δij where η and
ξ are the noises acting on the systems σ and τ respectively. The function K satisfies
K(1) = 1 so the two noises are identical if the two configurations coincide. This implies
that Qd(t) = 1 is a fixed point of the dynamics. It can be shown that for any possible
function K � 1 (with K(1) = 1) there is a finite-temperature damage-spreading transition
T0 only if K′(1) � 1. The case discussed previously of K = 1 (identical noises at all
times) yields the lowest damage-spreading transition temperature.

• T0 is the end-point of a dynamical critical line. The DS problem can be also generalized
to the case of K(Q) � λ with λ � 1 and K(1) = λ. Obviously for λ = 1, the dynamical
trajectories of the two systems may cross. In this case it is possible to show that the function
K(Q) = λ yields the lowest DS transition temperature T0(λ) among the set of possible
functions K (K(Q) � λ,K(1) = λ). T0(λ) is a monotonically increasing function of λ
which for λ = 0 coincides with the mode-coupling transition temperature Tc and finishes
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Figure 1. The asymptotic distance D∞ for p = 3 (K = 1) obtained from the Padé analysis of the
series expansions for different initial conditionsD0 = 1 (circles),D0 = 0.5 (triangles),D0 = 0.25
(stars). Typical error bars are shown for the last case.



6458 F Ritort

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Q
d(

t)

t

Figure 2. Qd(t) for p = 3 (K = 1) at temperatures T = 0.1, 0.5 (from bottom to top at large
times) for three different values of the initial overlap Qd(0) = −1, 0, 0.5 as a function of time.
The continuous lines are the numerical integrations with time step *t = 0.01.

at a critical end-point T0(λ = 1) = T0. So there exists a line of dynamic critical points
which connect the mode-coupling temperature Tc with the DS temperature T0.

• T0 is not universal. The temperature T0 is not universal. As it depends on the set of
correlations of the noises it also depends on the type of dynamics (molecular dynamics,
Monte Carlo with Metropolis, heat bath or Glauber). This is a well known result which
finds its natural explanation in the physical origin of the DS transition. For a general
dynamics it is not possible to map the DS transition onto the local properties of the potential
energy landscape. Only for the case of Langevin dynamics or molecular dynamics is this
possible. Other dynamics (such as Monte Carlo with heat-bath dynamics) use random
numbers in the dynamics which introduce complex correlations between the noises. This
yields a DS transition (related to the T0(λ) discussed in the previous paragraph for the
Langevin case) which is probably related to the mode-coupling transition temperature,
but this issue still needs further investigation.

4. Application to binary soft-sphere glasses

In this section we apply the previous ideas derived in the framework of mode-coupling theory
to the case of structural glasses. We consider the binary soft-sphere model introduced in [11]
and recently studied in [12]. For the sake of simplicity we consider a gas of N particles such
that half of them have diameter σ1 and the other half have diameter σ2. The particles interact
through a two-particle purely repulsive potential, the energy of the system being defined by

V =
∑
i<j

(
σij

rij

)12

. (20)
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The choice σij = (σi + σj )/2 supposes that diameters are additive during the collision
process. The advantage of this potential is that the thermodynamic properties depend on the
density ρ = N/V and the temperature T only through the constant - = ρ/T 1/4. For the
particular case of σ1/σ2 = 1.2, crystallization is strongly inhibited and the glass transition
(where the dynamics is strongly slowed down) appears in the vicinity of - = 1.45. Larger
values of - correspond to the glass phase while lower values correspond to the liquid phase.
The Langevin dynamics for the soft-sphere model is defined by

̇ri = −
N∑
j �=i

∇iVij (rij ) + ηi (21)

with 〈ηki (t)ηlj (t ′)〉 = 2T δij δklδ(t − t ′) where the superscripts of the noise indicate the
different Cartesian components of the vector noise η(t). The pairwise potential is given by
Vij (r) = (σij /r)12.

We now consider two systems described by the variables ri, si governed by (21) and
evolving under the same realization of the noise. We define the Euclidean distance

D(t) = 1

N

N∑
i=1

(ri − si)2 (22)

which vanishes if the two configurations coincide. If we want to extend the previous ideas for
the spherical p-spin model to this system, we must now take into account the fact that at very
high temperatures a gas diffuses, so D = 0 may not be a fixed point of the dynamics. There
are two strategies for dealing with this problem which are discussed below.

• Particles contained in a box. This is the most natural choice. To simulate a purely repulsive
system one must confine the particles in a cubic box of sideL such that ρ = N/L3. In this
case one may solve (20) numerically with two different classes of boundary conditions.
With periodic boundary conditions particles leave one side of the box and enter the
opposite side. This completely resets the coordinates of the particle, so the distance
(22) is discontinuous if particles cross the boundaries. For one-system quantities (such
as the energy or the pair correlation function) this is not a problem because the relevant
quantity is the distance between the particles which may be taken as the minimum value
between rij and L− rij . A similar procedure can be used to define the distance between
the two copies. Everything can be easily solved by considering free boundary conditions,
because particles are not allowed to cross the boundaries. In this case, it is possible to
show that D = 0 is asymptotically stable for the purely diffusive case (- = 0).

Preliminary results show that the DS transition temperature T0 = ∞, so two
configurations never coincide at finite temperature. Still both configurations retain some
correlation (so 〈 ri(t) · si(t)〉 > 0) and the asymptotic damage is a non-trivial function of
the temperature.

• Introducing a spherical constraint. For the purposes of studying the local properties of
the potential energy landscape, we may impose the global constraint

∑
i

ri2 = N
(
N

ρ

)2/3

on the particles in such a way that the average distance between the particles is finite
whenN goes to infinity. Because the spherical constraint shifts the Hessian matrix (5) by
a constant (a Lagrange multiplier), the transition with the spherical constraint may give
information on the transition for the unconstrained case. That Lagrange multiplier can
be simply obtained from the potential energy 〈V〉 and the temperature. The advantage of
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Figure 3. Damage D(t) as a function of time for N = 32 starting from two different initial
conditions and three different temperatures (from top to bottom) - = 0.8, 0.4, 0.2

such a constraint is that now there is no box and D = 0 is a fixed point of the dynamics
for - = 0. The drawback is that the simplicity of the original model is lost and the
thermodynamics of the new model depends on both density and temperature instead of a
unique parameter -.

Again, preliminary results show that T0 = ∞ in this case, soD = 0 is asymptotically
stable strictly only for - = 0. Although this approach is more involved, it is probably the
best way to relate the DS transition to the ruggedness of the free-energy landscape.

5. Conclusions

The study of the free-energy landscape may yield valuable information on the glass transition
phenomena. A promising description of the glass transition is through the Stillinger and Weber
projection of the partition function in terms on inherent structures. That method directly looks
at the potential energy landscape described in terms of basins of attraction explored by the
system during its dynamical evolution [6]. An alternative approach studies the dynamical
properties of the free-energy landscape directly looking at the largest Lyapunov exponent of
the Hessian matrix of the potential energy landscape weighted by the size of the basins of
attraction visited by the system during its dynamical evolution.

Exact results for the mode-coupling theory reveal that there is a transition T0 which
separates two well defined regimes depending on the value of the asymptotic distance. Below
T0 the asymptotic damage is non-zero and independent of the initial distance as well as the
class of initial conditions. Above T0 the damage vanishes. We argue that the precise value
of T0 is related to the vanishing of the largest Lyapunov exponent defined in (6). Although
such an explicit connection still needs to be proved it is quite probable that DS constitutes
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a precise tool for investigating the chaotic properties of the free-energy landscape. A result
along these lines has been recently obtained by Biroli through the study of the instantaneous
normal-modes spectra of the p-spin model [13]. Whether this transition has experimental
relevance in the study of real glasses is still an open question. Our preliminary studies of soft-
sphere binary mixtures show that T0 is extremely large. Because liquids are always diffusive
at large temperatures (a feature which is directly encoded in the wave-vector dependence of
correlation functions, a general feature of liquids) one must be careful when extending the
results obtained for the spherical p-spin model to real structural models of glasses. Although
a better understanding of the extension of DS to diffusive systems is needed we can point
out other interesting open problems. On one hand it could be very interesting to analyse the
DS transition for molecular dynamics. In that case, there is no stochasticity in the dynamical
equations so the effective source of noise comes out directly from the mixing property of the
dynamics. The analogue of equation (5) should be very similar except for the presence of
oscillations. Still the general argument would be the same and T0 would be expected to be
identical. Such an analysis would be welcome. Finally it would be very interesting to look at
the other end-point of the dynamic critical line. Our present discussion was centred on the case
of identical noises. For completely uncorrelated noises the dynamical transition temperature
is expected to coincide with the mode-coupling transition temperature. This is true in the
framework of the aforementioned exact calculations in the spherical model and could also be
analysed for real glasses.
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